By Topic

Recovery of corrupted low-rank matrices via half-quadratic based nonconvex minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ran He ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Zhenan Sun ; Tieniu Tan ; Wei-Shi Zheng

Recovering arbitrarily corrupted low-rank matrices arises in computer vision applications, including bioinformatic data analysis and visual tracking. The methods used involve minimizing a combination of nuclear norm and l1 norm. We show that by replacing the l1 norm on error items with nonconvex M-estimators, exact recovery of densely corrupted low-rank matrices is possible. The robustness of the proposed method is guaranteed by the M-estimator theory. The multiplicative form of half-quadratic optimization is used to simplify the nonconvex optimization problem so that it can be efficiently solved by iterative regularization scheme. Simulation results corroborate our claims and demonstrate the efficiency of our proposed method under tough conditions.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011