By Topic

Scene shape from texture of objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Payet, N. ; Oregon State Univ., Corvallis, OR, USA ; Todorovic, S.

Joint reasoning about objects and 3D scene layout has shown great promise in scene interpretation. One visual cue that has been overlooked is texture arising from a spatial repetition of objects in the scene (e.g., windows of a building). Such texture provides scene-specific constraints among objects, and thus facilitates scene interpretation. We present an approach to: (1) detecting distinct textures of objects in a scene, (2) reconstructing the 3D shape of detected texture surfaces, and (3) combining object detections and shape-from-texture toward a globally consistent scene interpretation. Inference is formulated within the reinforcement learning framework as a sequential interpretation of image regions, starting from confident regions to guide the interpretation of other regions. Our algorithm finds an optimal policy that maps states of detected objects and reconstructed surfaces to actions which ought to be taken in those states, including detecting new objects and identifying new textures, so as to minimize a long-term loss. Tests against ground truth obtained from stereo images demonstrate that we can coarsely reconstruct a 3D model of the scene from a single image, without learning the layout of common scene surfaces, as done in prior work. We also show that reasoning about texture of objects improves object detection.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011