System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Multi-target tracking by continuous energy minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Andriyenko, A. ; Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt, Germany ; Schindler, K.

We propose to formulate multi-target tracking as minimization of a continuous energy function. Other than a number of recent approaches we focus on designing an energy function that represents the problem as faithfully as possible, rather than one that is amenable to elegant optimization. We then go on to construct a suitable optimization scheme to find strong local minima of the proposed energy. The scheme extends the conjugate gradient method with periodic trans-dimensional jumps. These moves allow the search to escape weak minima and explore a much larger portion of the variable-dimensional search space, while still always reducing the energy. To demonstrate the validity of this approach we present an extensive quantitative evaluation both on synthetic data and on six different real video sequences. In both cases we achieve a significant performance improvement over an extended Kalman filter baseline as well as an ILP-based state-of-the-art tracker.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011