Cart (Loading....) | Create Account
Close category search window
 

A Sobolev-type metric for polar active contours

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Polar object representations have proven to be a powerful shape model for many medical as well as other computer vision applications, such as interactive image segmentation or tracking. Inspired by recent work on Sobolev active contours we derive a Sobolev-type function space for polar curves. This so-called polar space is endowed with a metric that allows us to favor origin translations and scale changes over smooth deformations of the curve. Moreover, the resulting curve flow inherits the coarse-to-fine behavior of Sobolev active contours and is thus very robust to local minima. These properties make the resulting polar active contours a powerful segmentation tool for many medical applications, such as cross-sectional vessel segmentation, aneurysm analysis, or cell tracking.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.