Cart (Loading....) | Create Account
Close category search window
 

Secure Communication in Stochastic Wireless Networks—Part I: Connectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pinto, P.C. ; LCAV, Swiss Fed. Inst. of Technol. (EPFL), Lausanne, Switzerland ; Barros, J. ; Win, M.Z.

The ability to exchange secret information is critical to many commercial, governmental, and military networks. Information-theoretic security-widely accepted as the strictest notion of security-relies on channel coding techniques that exploit the inherent randomness of the propagation channels to strengthen the security of digital communications systems. Motivated by recent developments in the field, we aim to characterize the fundamental secrecy limits of wireless networks. The paper is comprised of two separate parts. In Part I, we define the intrinsically secure communications graph (iS-graph), a random graph which describes the connections that can be securely established over a large-scale network. We provide conclusive results for the local connectivity of the Poisson iS-graph, in terms of node degrees and isolation probabilities. We show how the secure connectivity of the network varies with the wireless propagation effects, the secrecy rate threshold of each link, and the noise powers of legitimate nodes and eavesdroppers. We then propose sectorized transmission and eavesdropper neutralization as viable strategies for improving the secure connectivity. Our results help clarify how the spatial density of eavesdroppers can compromise the intrinsic security of wireless networks. In Part II of the paper, we study the achievable secrecy rates and the effect of eavesdropper collusion.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.