By Topic

Compact Modeling of Partially Depleted Silicon-on-Insulator Drain-Extended MOSFET (DEMOSFET) Including High-Voltage and Floating-Body Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Agarwal, T.K. ; Dept. of Electr. Eng., Indian Inst. of Technol. Delhi, New Delhi, India ; Trivedi, A.R. ; Subramanian, V. ; Kumar, M.J.

In this paper, a scalable compact model for partially depleted silicon-on-insulator drain-extended MOSFETs (PD SOI DEMOSFETs) is developed using a subcircuit approach. The proposed compact model captures the special direct-current behavior of a PD SOI DEMOSFET transistor. Our model accounts for high-voltage effects such as quasi-saturation and impact ionization in the drift region, along with a floating-body effect such as the kink effect in the output characteristics of the floating-body PD SOI DEMOSFET transistor. In the subcircuit approach used, the channel region is modeled using the BSIM4SOI model, and the drift region is modeled using a bias-dependent resistance model, along with a current-controlled current source. The model is validated for a set of channel and drift lengths to demonstrate the scalability of the model. The accuracy of the proposed compact model is verified using 2-D numerical simulations.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 10 )