By Topic

Ferromagnetic Nanowire Metamaterials: Theory and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carignan, L. ; Dept. of Eng. Phys., Ecole Polytech. de Montreal, Montréal, QC, Canada ; Yelon, A. ; Menard, David ; Caloz, C.

An overview of ferromagnetic nanowire (FMNW) metamaterials is presented. First, FMNW metamaterials are placed in the historical context of antique composites and 20th Century artificial dielectrics, and presented as an example of second-generation metamaterials following the microstructured metamaterials developed in the first part of the decade. Next, the fabrication processes of FMNW metamaterials and subsequent planar devices are detailed. It is then shown how the geometrical properties of the FMNW structure, such as the wire diameter and the wire nanodisk thicknesses, determine the dc and RF responses of the material. Upon this basis, the modeling of the metamaterial is presented, using a two-level approach where the microscopic (with respect to the wires) susceptibility is derived by solving the Landau-Lifshitz equation and the macroscopic (metamaterial) permittivity and permeability tensors are obtained by effective medium theory. Next, a review of FMNW microwave devices, such as circulators, isolators, and phase shifters, is provided, and the example of an FMNW dual-band edge-mode isolator is studied. Finally, spintronic effects and applications of FMNW metamaterials, such as dc to RF generators and detectors based on the spin-torque transfer phenomenon, are reviewed.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 10 )