By Topic

Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ke-Hou Chen ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Shen-Iuan Liu

Two inductorless wideband low-noise amplifiers (LNAs) fabricated in a 65-nm CMOS process are presented. By using the gain-enhanced noise-canceling technique, the gain at noise-cancelling condition is increased, while the input matching is maintained. The first work is a common-source LNA with resistive shunt feedback. It achieves a maximum power gain of 10.5 dB, a bandwidth of 10 GHz, a noise figure (NF) of 2.7-3.3 dB, and an IIP3 of -3.5 dBm. The power consumption is 13.7 mW from a 1-V supply, and the area is 0.02 mm 2. The second work is a common-gate LNA. It achieves a maximum power gain of 10.7 dB, a bandwidth of 5.2 GHz, a NF of 2.9-5.4 dB, and an IIP3 of -6 dBm. The power consumption is 7 mW from a 1-V supply, and the area is 0.03 mm 2. Experimental results demonstrate that the first LNA shows the largest bandwidth, and the second LNA has the lowest power consumption among the inductorless wideband LNAs.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 2 )