Cart (Loading....) | Create Account
Close category search window
 

Investigation of Loading Effect on Power Performance for Planar Gunn Diodes Using Load-Pull Measurement Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chong Li ; Sch. of Eng., Univ. of Glasgow, Glasgow, UK ; Lok, L.B. ; Khalid, A. ; Thayne, I.G.
more authors

A one-port load-pull measurement has been carried out in order to investigate the effect of loading on the RF power performance of a planar Gunn diode operating in the transit-time mode at 102 GHz. A W-band manual E-H tuner was applied between a waveguide mixer and a wafer probe to vary the load impedance on the Gunn diode. It has been found that more than 25 dB variation of output power was obtained by systematically adjusting the tuner. By de-embedding the S-parameters of the probe, E-H tuner and mixer, the relationship between RF power and load impedance for the planar Gunn diode was derived. This method is extremely useful for assisting the design of matching networks to improve power output of one-port oscillator devices.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:21 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.