By Topic

Model predictive direct torque control for grid synchronization of doubly fed induction generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongchang Zhang ; Fac. of Eng. & Inf. Technol., Univ. of Technol. Sydney, Sydney, NSW, Australia ; Jianguo Zhu ; Jiefeng Hu

A novel model predictive direct torque control (MPDTC) is proposed in this paper to achieve soft and fast grid synchronization for doubly fed induction generator (DFIG). This method is based on the direct control of a virtual torque and the rotor flux, which selects the optimal rotor voltage vector through an evaluation of a cost function. Neither PI regulator nor grid voltage measurement is needed for the MPDTC and only the information of grid voltage, rotor current and rotor position are necessary. The influence of one-step delay caused by digital implementation is also investigated in this paper. The MPDTC is compared with the switching-table-based direct torque control (STDTC) and exhibits better performance in terms of lower ripples in torque and flux, less rotor current harmonics and lower switching frequency. The presented simulation results verify the effectiveness of the novel method.

Published in:

Electric Machines & Drives Conference (IEMDC), 2011 IEEE International

Date of Conference:

15-18 May 2011