By Topic

High-mobility organic thin-film transistors with photolithographically patterned top contacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Ute Zschieschang ; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany ; Nis Hauke Hansen ; Jens Pflaum ; Tatsuya Yamamoto
more authors

Due to its large-area capability and high resolution, photolithography is the preferred patterning method for pentacene thin-film transistors (TFTs) for display and circuit applications [1,2]. Since the morphology of thin pentacene films is very sensitive to solvents and heat [3,4], the photolithographic patterning of the source/drain contacts is ideally performed prior to the pentacene deposition, which explains the general preference for the bottom-contact (coplanar) TFT structure. However, as experiments [5] and simulations [6,7] have shown, the bottom-contact TFT structure is associated with substantially larger contact resistance than the top-contact (staggered) structure, which means that for the same channel length, top-contact TFTs are expected to provide larger transconductance and higher cutoff frequency than bottom-contact TFTs. Here we report on organic TFTs with Au top contacts patterned by ordinary photolithography and wet etching (using common solvents, photoresists, and etchants) having field-effect mobilities (0.4 cm2/Vs) and on/off current ratios (107) similar to those of optimized bottom-contact pentacene TFTs [1,2,5].

Published in:

Device Research Conference (DRC), 2011 69th Annual

Date of Conference:

20-22 June 2011