Cart (Loading....) | Create Account
Close category search window

Carbon nanotube thin film transistors on flexible substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chandra, Bhupesh ; IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA ; Park, Hongsik ; Maarouf, Ahmed ; Martyna, Glenn J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Carbon nanotube thin film transistors (CNT-TFTs) are fabricated on flexible substrates using purified, surfactant-based CNT suspensions, with >95% semiconducting CNT fraction. The TFTs are made up of local bottom-gated structures with aluminum oxide as the gate dielectric. The devices exhibit high ON current densities (0.1 μA/μm) and on-off ratios (∼105) with mobility values ranging from 10-35 cm2/Vs. A detailed numerical model is used to understand the TFT performance and its dependence on device parameters such as TFT channel length, CNT density, and purity.

Published in:

Applied Physics Letters  (Volume:99 ,  Issue: 7 )

Date of Publication:

Aug 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.