By Topic

Memory energy management for an enterprise decision support system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kumar, K. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Doshi, K. ; Dimitrov, M. ; Yung-Hsiang Lu

Energy efficiency is an important factor in designing and configuring enterprise servers. In these servers, memory may consume 40% of the total system power. Different memory configurations (sizes, numbers of ranks, speeds, etc.) can have significant impacts on the performance and energy consumption of enterprise workloads. Many of these workloads, such as decision support systems (DSS), require large amounts of memory. This paper investigates the potential to save energy by making the memory configuration adaptive to workload behavior. We present a case study on how memory configurations affect energy consumption and performance for running DSS. We measure the energy consumption and performance of a commercial enterprise server, and develop a model to describe the conditions when energy can be saved with acceptable performance degradation. Using this model, we identify opportunities to save energy in future enterprise servers.

Published in:

Low Power Electronics and Design (ISLPED) 2011 International Symposium on

Date of Conference:

1-3 Aug. 2011