By Topic

A Novel Accelerometer-Based Gesture Recognition System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Akl, A. ; Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Chen Feng ; Valaee, S.

In this paper, we address the problem of gesture recognition using the theory of random projection (RP) and by formulating the whole recognition problem as an 1-minimization problem. The gesture recognition system operates primarily on data from a single 3-axis accelerometer and comprises two main stages: a training stage and a testing stage. For training, the system employs dynamic time warping as well as affinity propagation to create exemplars for each gesture while for testing, the system projects all candidate traces and also the unknown trace onto the same lower dimensional subspace for recognition. A dictionary of 18 gestures is defined and a database of over 3700 traces is created from seven subjects on which the system is tested and evaluated. To the best of our knowledge, our dictionary of gestures is the largest in published studies related to acceleration-based gesture recognition. The system achieves almost perfect user-dependent recognition, and mixed-user and user-independent recognition accuracies that are highly competitive with systems based on statistical methods and with the other accelerometer-based gesture recognition systems available in the literature.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 12 )