By Topic

Rate-Distortion Analysis of Directional Wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maleki, A. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Rajaei, B. ; Pourreza, H.R.

The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not “sharp,” the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )