By Topic

A Fast Majorize–Minimize Algorithm for the Recovery of Sparse and Low-Rank Matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yue Hu ; Dept. of Electr. & Comput. Eng., Univ. of Rochester, Rochester, NY, USA ; Lingala, S.G. ; Jacob, M.

We introduce a novel algorithm to recover sparse and low-rank matrices from noisy and undersampled measurements. We pose the reconstruction as an optimization problem, where we minimize a linear combination of data consistency error, nonconvex spectral penalty, and nonconvex sparsity penalty. We majorize the nondifferentiable spectral and sparsity penalties in the criterion by quadratic expressions to realize an iterative three-step alternating minimization scheme. Since each of these steps can be evaluated either analytically or using fast schemes, we obtain a computationally efficient algorithm. We demonstrate the utility of the algorithm in the context of dynamic magnetic resonance imaging (MRI) reconstruction from sub-Nyquist sampled measurements. The results show a significant improvement in signal-to-noise ratio and image quality compared with classical dynamic imaging algorithms. We expect the proposed scheme to be useful in a range of applications including video restoration and multidimensional MRI.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )