By Topic

Two High-Performance Adaptive Filter Implementation Schemes Using Distributed Arithmetic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rui Guo ; Dept. of Electr. & Comput. Eng., Florida State Univ., Tallahassee, FL, USA ; DeBrunner, L.S.

Distributed arithmetic (DA) is performed to design bit-level architectures for vector-vector multiplication with a direct application for the implementation of convolution, which is necessary for digital filters. In this brief, two novel DA-based implementation schemes are proposed for adaptive finite-impulse response filters. Different from conventional DA techniques, our proposed schemes use coefficients as addresses to access a series of lookup tables (LUTs) storing sums of delayed and scaled input samples. Two smart LUT updating methods are developed, and least-mean-square adaptation is performed to update the weights and minimize the mean square error between the estimated and desired output. Results show that our two high-performance designs achieve high speed, low computation complexities, and low area cost.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:58 ,  Issue: 9 )