By Topic

Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gabriele Minatti ; Information Engineering, University of Siena, Siena, Italy ; Francesco Caminita ; Massimiliano Casaletti ; Stefano Maci

Different kinds of spiral planar circularly polarized (CP) antennas are presented. These antennas are based on an interaction between a cylindrical surface-wave excited by an omnidirectional probe and a inhomogeneous surface impedance with a spiral pattern. The surface impedance interaction transforms a bounded surface wave into a circularly polarized leaky wave with almost broadside radiation. The problem is studied by adiabatically matching the local 2D solution of a modulated surface-impedance problem to the actual surface. Analytical expressions are derived for the far-field radiation pattern; on this basis, universal design curves for antenna gain are given and a design procedure is outlined. Two types of practical solutions are presented, which are relevant to different implementations of the impedance modulation: i) a grounded dielectric slab with a spiral-sinusoidal thickness and ii) a texture of dense printed patches with sizes variable with a spiral-sinusoidal function. Full wave results are compared successfully with the analytical approximations. Both the layouts represent good solutions for millimeter wave CP antennas.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:59 ,  Issue: 12 )