By Topic

Design, Simulation, Fabrication and Testing of Flexible Bow-Tie Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ahmet Cemal Durgun ; School of Electrical, Computer and Energy Engineering, Arizona State University (ASU), Tempe, AZ, USA ; Constantine A. Balanis ; Craig R. Birtcher ; David R. Allee

Design, simulation, fabrication and measurement of two different novel flexible bow-tie antennas, a conventional and a modified bow-tie antenna with reduced metallization, are reported in this paper. The antennas are mounted on a flexible substrate fabricated at the Flexible Display Center (FDC) of Arizona State University (ASU). The substrate is heat stabilized polyethylene naphthalate (PEN) which allows the antennas to be flexible. The antennas are fed by a microstrip-to-coplanar feed network balun. The reduction of the metallization is based on the observation that the majority of the current density is confined towards the edges of the regular bow-tie antenna. Hence, the centers of the triangular parts of the conventional bow-tie antenna are removed without compromising significantly its performance. The return losses and radiation patterns of the antennas are simulated with HFSS and the results are compared with measurements, for bow-tie elements mounted on flat and curved surfaces. The comparisons show that there is an excellent agreement between the simulations and measurements for both cases. Furthermore, the radiation performance of the modified bow-tie antenna is verified, by simulations and measurements, to be very close to the conventional bow-tie.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:59 ,  Issue: 12 )