By Topic

Performance of global load balancing by local adjustment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hajek, B. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA

A set of M resource locations and a set of αM consumers are given. Each consumer requires a specified amount of resource, and is constrained to obtain the resource from a specified subset of locations. The problem of assigning consumers to resource locations so as to balance the load among the resource locations as much as possible is considered. It is shown that there are assignments, termed uniformly most-balanced assignments, that simultaneously minimize certain symmetric, separable, convex cost functions. The problem of finding such assignments is equivalent to a network flow problem with convex cost. Algorithms of both the iterative and combinatorial type are given for computing the assignments. The distribution function of the load at a given location for a uniformly most-balanced assignment is studied, assuming that the set of locations each consumer can use is random. An asymptotic lower bound on the distribution function is given for M tending to infinity, and an upper bound is given on the probable maximum load. It is shown that there is typically a large set of resource locations that all have the minimum load, and that for large average loads the maximum load is near the average load

Published in:

Information Theory, IEEE Transactions on  (Volume:36 ,  Issue: 6 )