By Topic

Hourly Traffic Forecasts Using Interacting Multiple Model (IMM) Predictor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yang Zhang ; Shanghai Municipal Transp. Inf. Center, Shanghai Urban & Rural Constr. & Transp. Comm., Shanghai, China

Accurate and timely forecasting of traffic status is crucial to effective management of intelligent transportation systems (ITS). An interacting multiple model (IMM) predictor is proposed to forecast travel time index (TTI) data in the letter. To the best of our knowledge, it is the first time to propose the novel combined predictor. Seven baseline individual predictors are selected as combination components because of their proved effectiveness. Experimental results demonstrate that the IMM predictor can significantly outperform the other predictors and provide a large improvement in stability and robustness. This reveals that the approach is practically promising in traffic forecasting.

Published in:

Signal Processing Letters, IEEE  (Volume:18 ,  Issue: 10 )