By Topic

Topological detection on wormholes in wireless ad hoc and sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dezun Dong ; Nat. Lab. for Paralleling & Distrib. Process., Nat. Univ. of Defense Technol. (NUDT), Changsha, China ; Mo Li ; Yunhao Liu ; Xiang-Yang Li
more authors

Wormhole attack is a severe threat to wireless ad hoc and sensor networks. Most existing countermeasures either require specialized hardware devices or make strong assumptions on the network in order to capture the specific (partial) symptom induced by wormholes. Those requirements and assumptions limit the applicability of previous approaches. In this paper, we present our attempt to understand the impact and inevitable symptom of wormholes and develop distributed detection methods by making as few restrictions and assumptions as possible. We fundamentally analyze the wormhole problem using a topology methodology and propose an effective distributed approach, which relies solely on network connectivity information, without any requirements on special hardware devices or any rigorous assumptions on network properties. We formally prove the correctness of this design in continuous geometric domains and extend it into discrete domains. We evaluate its performance through extensive simulations.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 6 )