By Topic

General ADI-FDTD Formulations for Multi-Term Dispersive Electromagnetic Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Omar Ramadan ; Computer Engineering Department, Eastern Mediterranean University, Mersin 10, Turkey

General formulations of the alternating direction implicit finite difference time domain method are presented for modeling multi-term dispersive electromagnetic applications. The proposed formulations, which are based on the exponential evolution operator scheme, allow modeling different types of frequency dependent materials in the same manner and can be easily incorporated with the nearly perfectly matched layer absorbing boundary conditions to model open region problems. 2-D numerical example is included to show the validity of the proposed formulations.

Published in:

IEEE Microwave and Wireless Components Letters  (Volume:21 ,  Issue: 10 )