By Topic

A maximum power transfer battery charger for electric vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. J. Masserant ; Dept. of Electr. & Comput. Eng., Toledo Univ., OH, USA ; T. A. Stuart

A battery charger is described that uses an on-line microcontroller to maximize its output power. This is done by always operating at either the maximum allowable input current or the thermal limit imposed by the charger itself. In this case the thermal limit is determined by the junction temperatures of the two main insulated gate bipolar transistors (IGBTs). Since direct measurement of these temperatures is impractical, they must be calculated by a computer algorithm that uses various on-line measurements. Experimental results for an 8 kW charger indicate a reduction in the bulk charging time of about 26% when used with a set of NiFe batteries.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:33 ,  Issue: 3 )