By Topic

Building Artificial Identities in Social Network Using Semantic Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kai Chen ; Dept. of Electron. Eng., Shanghai Jiaotong Univ., Shanghai, China ; Yi Zhou ; Li Song ; Xiaokang Yang

As the popularity of social networking sites increase, so does their attractiveness for criminals. In this work, we show how an adversary can build artificial identities using semantic information in social network. Our method make the identities look more like real people, therefore can be used to support many kinds of attacks, such as ASE, profile cloning. A prototype of this method is implemented, includes following stages: Firstly, categories of virtual identity are predefined, and each category has multiple properties, such as geographical region, hobby, education, age, interested topic/keywords, etc. Secondly, based on category information, each identity will foster its own "life" semantically, such as edit profile and update status, find hot related news/topic from Google then post to wall, find related groups/networks then request to add in, and find/like/create/comment pages/posts, etc. Thirdly, artificial identity will evolve to multiple stages according to its status (for example, number of friends of real people), single identity with different evolutionary stages is linked together to a group that will help to ensure the number of attack edges.

Published in:

Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on

Date of Conference:

25-27 July 2011