By Topic

Static Analysis for Efficient Hybrid Information-Flow Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moore, S. ; Sch. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; Chong, S.

Hybrid information-flow monitors use a combination of static analysis and dynamic mechanisms to provide precise strong information security guarantees. However, unlike purely static mechanisms for information security, hybrid information-flow monitors incur run-time overhead. We show how static analyses can be used to make hybrid information-flow monitors more efficient, in two ways. First, a simple static analysis can determine when it is sound for a monitor to stop tracking the security level of certain variables. This potentially reduces run-time overhead of the monitor, particularly in applications where sensitive (i.e., confidential or untrusted) data is infrequently introduced to the system. Second, we derive sufficient conditions for soundly incorporating a wide range of memory abstractions into information-flow monitors. This allows the selection of a memory abstraction that gives an appropriate tradeoff between efficiency and precision. It also facilitates the development of innovative and sound memory abstractions that use run-time security information maintained by the monitor. We present and prove our results by extending the information-flow monitor of Russo and Sabelfeld (2010). These results bring us closer to efficient, sound, and precise enforcement of information security.

Published in:

Computer Security Foundations Symposium (CSF), 2011 IEEE 24th

Date of Conference:

27-29 June 2011