Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Numerical Modeling of Eccentered LWD Borehole Sensors in Dipping and Fully Anisotropic Earth Formations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hwa Ok Lee ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Teixeira, F.L. ; San Martin, L.E. ; Bittar, M.S.

Logging-while-drilling (LWD) borehole sensors are used to provide real-time resistivity data of adjacent earth formations for hydrocarbon exploration. This allows for a proactive adjustment of the dipping angle and azimuth direction of the drill and, hence, geosteering capabilities. The analysis of borehole eccentricity effects on LWD sensor response in full 3 3 anisotropic earth formations is important for correct data interpretation in deviated or horizontal wells. In this paper, we present a cylindrical-grid finite-difference time-domain model to tackle this problem. The grid is aligned to the sensor axis to avoid staircasing error in the sensor geometry but, in general, misaligned to the (eccentered) borehole/formation interface. A locally conformal discretization is used to compute effective conductivity tensors of partially-filled grid cells at those interfaces, involving an isotropic medium (borehole) and a full 3 3 anisotropic medium in general (dipped earth formation). The numerical model is used to compute the response of eccentered LWD sensors in layered earth formations with anisotropic dipping beds.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 3 )