By Topic

A Calderón Multiplicative Preconditioner for the PMCHWT Integral Equation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cools, K. ; Univ. of Gent, Antwerp, Belgium ; Andriulli, F.P. ; Michielssen, E.

Electromagnetic scattering by penetrable bodies often is modelled by the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) integral equation. Unfortunately the spectrum of the operator involved in this equation is bounded neither from above or below. This implies that the equation suffers from dense discretization breakdown; that is, the condition numbers of the matrix resulting upon discretizing the equation rise with the mesh density. The electric field integral equation, often used to model scattering by perfect electrically conducting bodies, is susceptible to a similar breakdown phenomenon. Recently, this breakdown was cured by leveraging the Calderón identities. In this paper, a Calderón preconditioned PMCHWT integral equation is introduced. By constructing a Calderón identity for the PMCHWT operator, it is shown that the new equation does not suffer from dense discretization breakdown. A consistent discretization scheme involving both Rao-Wilton-Glisson and Buffa-Christiansen functions is introduced. This scheme amounts to the application of a multiplicative matrix preconditioner to the classical PMCHWT system, and therefore is compatible with existing boundary element codes and acceleration schemes. The efficiency and accuracy of the algorithm are corroborated by numerical examples.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 12 )