By Topic

Optimal design of power-split transmissions for hydraulic hybrid passenger vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kai Loon Cheong ; Dept. of Mech. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Li, P.Y. ; Chase, T.R.

Hydraulic hybrid vehicles are inherently power dense. Power-split or hydro-mechanical transmissions (HMT) have advantages over series and parallel architectures. In this paper, an approach for optimizing the configuration and sizing of a hydraulic hybrid power-split transmission is proposed. Instead of considering each mechanical configuration consisting of combinations of gear ratios, a generalized kinematic relation is used to avoid redundant computation. This captures different architectures such as input coupled, output coupled and compound configurations. Generic kinematic relations are shown to be mechanically realizable. Modal operation of the transmission is introduced to reduce energy loss. The Lagrange multiplier method for computing the optimal energy management control is shown to be computationally efficient for use in transmission design iterations. An optimal design case study indicates improvement in fuel economy and smaller component sizes for the compound and input coupled power-split configurations.

Published in:

American Control Conference (ACC), 2011

Date of Conference:

June 29 2011-July 1 2011