By Topic

Robust performance design of PID controllers with inverse multiplicative uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tooran Emami ; Electrical Engineering and Computer Science Department, Wichita State University, KS 67260 USA ; John M. Watkins

In this paper a graphical method is introduced for finding all proportional integral derivative (PID) controllers that satisfy a robust performance constraint for a given single input-single-output (SISO) linear time invariant (LTI) transfer function of any order with time-delay. This problem can be solved by finding all achievable PID controllers that simultaneously stabilize the closed-loop characteristic polynomial and satisfy constraints defined by a set of related complex polynomials. Inverse multiplicative modeling is used to describe the uncertainty of unstable perturbed system. A key advantage of this procedure is that it only depends on the frequency response of the system and does not require the plant transfer function coefficients. If the plant transfer function is given, the procedure is still appropriate. Inverse multiplicative modeling often allows for designs with reduced conservativeness in the unstable pole uncertainty and it increases the size of the set of all PID controllers that robustly meet the performance requirements.

Published in:

Proceedings of the 2011 American Control Conference

Date of Conference:

June 29 2011-July 1 2011