By Topic

A discrete-time parameter estimation based adaptive actuator failure compensation control scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang Tan ; College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, China ; Ruiyun Qi ; Gang Tao

This paper studies discrete-time adaptive failure compensation control of systems with uncertain actuator failures, using an indirect adaptive control method. A discrete time model of a continuous-time linear system with actuator failures is derived and its key features are clarified. A new discrete-time adaptive actuator failure compensation control scheme is developed, which consists of a total parametrization of the system with parameter and failure uncertainties, a stable adaptive parameter estimation algorithm, and an on-line design procedure for feedback control. This work represents a new design of direct adaptive compensation of uncertain actuator failures, using an indirect adaptive control method. Such an adaptive design ensures desired closed-loop system stability and asymptotic tracking properties despite uncertain actuator failures. Simulation results are presented to show the desired adaptive actuator failure compensation performance.

Published in:

Proceedings of the 2011 American Control Conference

Date of Conference:

June 29 2011-July 1 2011