By Topic

Sliding mode observers for sensorless control of current-fed induction motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bullo, D. ; Terna S.p.A., Pero, Italy ; Ferrara, A. ; Rubagotti, M.

This paper presents the use of a higher order sliding mode scheme for sensorless control of induction motors. The second order sub-optimal control law is based on a reduced-order model of the motor, and produces the references for a current regulated PWM inverter. A nonlinear observer structure, based on Lyapunov theory and on different sliding mode techniques (first order, sub-optimal and super-twisting) generates the velocity and rotor flux estimates necessary for the controller, based only on the measurements of phase voltages and currents. The proposed control scheme and observers are tested on an experimental setup, showing a satisfactory performance.

Published in:

American Control Conference (ACC), 2011

Date of Conference:

June 29 2011-July 1 2011