By Topic

Optimal covariance selection for estimation using graphical models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vichik, S. ; Dept. of Aerosp. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Oshman, Y.

We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditional independence constraints, how should one select the constrained covariance, optimally representing the (given) a priori covariance, but also satisfying the constraints? In 1972, Dempster provided a solution, optimal in the maximum likelihood sense, to the above problem. Since then, many works have used Dempster's optimal covariance, but none has addressed the issue of suitability of this covariance for Bayesian estimation problems. We prove that Dempster's covariance is not optimal in most minimum mean squared error (MMSE) estimation problems. We also propose a method for finding the MMSE optimal covariance, and study its properties. We then illustrate the analytical results via a numerical example, that demonstrates the estimation performance advantage gained by using the optimal covariance vs Dempster's covariance. The numerical example also shows that, for the particular estimation scenario examined, Dempster's covariance violates the necessary conditions for optimality.

Published in:

American Control Conference (ACC), 2011

Date of Conference:

June 29 2011-July 1 2011