By Topic

SLA-aware placement of multi-virtual machine elastic services in compute clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Breitgand, D. ; Haifa Res. Lab., Virtualization Technol., Syst. Technol. & Services, IBM, Haifa, Israel ; Epstein, A.

Elastic services comprise multiple virtualized resources that can be added and deleted on demand to match variability in the workload. A Service owner profiles the service to determine its most appropriate sizing under different workload conditions. This variable sizing is formalized through a service level agreement (SLA) between the service owner and the cloud provider. The Cloud provider obtains maximum benefit when it succeeds to fully allocate the resource set demanded by the elastic service subject to its SLA. Failure to do so may result in SLA breach and financial losses to the provider. We define a novel combinatorial optimization problem called elastic services placement problem (ESPP) to maximize the provider's benefit from SLA compliant placement. We observe that ESPP extends the generalized assignment problem (GAP), which is a well studied combinatorial optimization problem. However, ESPP turns out to be considerably harder to solve as it does not admit a constant factor approximation. We show that using a simple transformation, ESPP can be presented as a multi-unit combinatorial auction. We further present a column generation method to obtain near optimal solutions for ESPP for large data centers where exact solutions cannot be obtained in a reasonable amount of time using a direct integer programming formulation. We demonstrate the feasibility of our approach through an extensive simulation study. Our results show that we are capable of consistently obtaining good solutions in a time efficient manner. Moreover, if one is willing to trade precision to gain in computation time, our method allows to explicitly manage this tradeoff.

Published in:

Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on

Date of Conference:

23-27 May 2011