Cart (Loading....) | Create Account
Close category search window
 

Comparison of Machine Learning Techniques using the WEKA Environment for Prostate Cancer Therapy Plan

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mallios, N. ; Dept. of Inf. & Comput. Technol., Technol. Educ. Inst. of Lamia, Lamia, Greece ; Papageorgiou, E. ; Samarinas, M.

The improvement and exploitation of a number of prominent Data Mining techniques in numerous real-world application areas (e.g. Industry, Healthcare and Bioscience) has led to the utilization of such techniques in machine learning environments, in order to extract useful pieces of information of the specified data and support decision making. Throughout this study, a comprehensive techniques' comparison is performed upon a fairly large set of data consisting of real medical incidents of men with the diagnosis of prostate cancer which are receiving medical treatment. 40 patients, suffered previously with prostate cancer and without undergone radiation therapy, were examined for therapy change after already receiving medical treatment. Six parameters were measured for eight subsequent quartiles to assess the patient state and its treatment outcome. Specifically, with the aim of the open source WEKA environment, the given data is tested with a number of machine learning andclassification techniques in order to compare the performance of the chosen algorithms upon the practitioner's decision of a potential therapy change.

Published in:

Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2011 20th IEEE International Workshops on

Date of Conference:

27-29 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.