Cart (Loading....) | Create Account
Close category search window
 

The DC characteristics of GaAs/AlGaAs heterojunction bipolar transistors with application to device modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hafizi, M. ; TRW Inc., Redondo Beach, CA, USA ; Crowell, C.R. ; Grupen, M.E.

A complete DC model for the heterojunction bipolar transistor (HBT) is presented. The DC characteristics of the HBT are compared with the Ebers-Moll (EM) model used by conventional bipolar junction transistors (BJTs) and implemented in simulation and modeling programs. It is shown that although the details of HBT operation can differ markedly from those of a BJT, a model and a parameter extraction technique can be developed which have physical meaning and are exactly compatible with the EM models widely used for BJTs. Device I- V measurements at 77 and 300 K are used to analyze the HBT physical device performance in the context of an EM model. A technique is developed to extract the device base, emitter, and collector series resistances directly from the measured I-V data without requiring an ideal exp(qVbe/kT) base current as reference. Accuracies of the extracted series resistances are assessed. AC parameters of HBT are calculated numerically from the physical device structure. For modeling purposes, these parameters are shown to be comparable with those of conventional BJTs

Published in:

Electron Devices, IEEE Transactions on  (Volume:37 ,  Issue: 10 )

Date of Publication:

Oct 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.