By Topic

Design of an Energy-Efficient Asynchronous NoC and Its Optimization Tools for Heterogeneous SoCs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daniel Gebhardt ; School of Computing, University of Utah, Salt Lake City, UT, USA ; Junbok You ; Kenneth S. Stevens

The energy usage of on-chip interconnects is a concern for many system-on-chips targeting portable battery-powered devices. We have designed and evaluated a network-on-chip (NoC) for such an application, including tools to optimize for power and communication latency. Our asynchronous (clockless) network operates with efficient two-phase bundled-data links and four-phase routers. The topology and router floorplan is determined by our tool, ANetGen, which optimizes the network for energy and latency using simulated annealing and force-directed placement methods. We compare our solutions against a traditional synchronous NoC as specified by the COSI-2.0 framework and ORION 2.0 router and wire energy models. Traffic is simulated with SystemC functional models, and messages are generated with a “bursty” self-similar b-model. Results indicate our asynchronous network was more energy-efficient, lower in area, and provided comparable or superior message latency.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:30 ,  Issue: 9 )