By Topic

A Low Voltage All-Digital On-Chip Oscillator Using Relative Reference Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chien-Ying Yu ; Department of Electronics Engineering & Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C. ; Jui-Yuan Yu ; Chen-Yi Lee

This paper presents a low voltage on-chip oscillator which can compensate process, voltage, and temperature (PVT) variation in an all-digital manner. The relative reference modeling applies a pair of ring oscillators as relative references and estimates period of the internal ring oscillator. The period estimation is parameterized by a second-order polynomial. Accordingly, the oscillator compensates frequency variations in a frequency division fashion. A 1-20 MHz adjustable oscillator is implemented in a 90-nm CMOS technology with 0.04 mm area. The fabricated chips are robust to variations of supply voltage from 0.9 to 1.1 V and temperature range from 0°C to 75°C. The low supply voltage and the small area make it suitable for low-cost and low-power systems.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 9 )