Cart (Loading....) | Create Account
Close category search window
 

Scalable Packet Classification on FPGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weirong Jiang ; Juniper Networks Inc., Sunnyvale, CA, USA ; Prasanna, V.K.

Multi-field packet classification has evolved from traditional fixed 5-tuple matching to flexible matching with arbitrary combination of numerous packet header fields. For example, the recently proposed OpenFlow switching requires classifying each packet using up to 12-tuple packet header fields. It has become a great challenge to develop scalable solutions for next-generation packet classification that support higher throughput, larger rule sets and more packet header fields. This paper exploits the abundant parallelism and other desirable features provided by current field-programmable gate arrays (FPGAs), and proposes a decision-tree-based, 2-D multi-pipeline architecture for next-generation packet classification. We revisit the techniques for traditional 5-tuple packet classification and propose several optimization techniques for the state-of-the-art decision-tree-based algorithm. Given a set of 12-tuple rules, we develop a framework to partition the rule set into multiple subsets each of which is built into an optimized decision tree. A tree-to-pipeline mapping scheme is carefully designed to maximize the memory utilization while sustaining high throughput. The implementation results show that our architecture can store either 10K real-life 5-tuple rules or 1K synthetic 12-tuple rules in on-chip memory of a single state-of-the-art FPGA, and sustain 80 and 40 Gbps throughput for minimum size (40 bytes) packets, respectively.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 9 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.