Cart (Loading....) | Create Account
Close category search window
 

Robust Student's-t Mixture Model With Spatial Constraints and Its Application in Medical Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thanh Minh Nguyen ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada ; Wu, Q.M.J.

Finite mixture model based on the Student's-t distribution, which is heavily tailed and more robust than Gaussian, has recently received great attention for image segmentation. A new finite Student's-t mixture model (SMM) is proposed in this paper. Existing models do not explicitly incorporate the spatial relationships between pixels. First, our model exploits Dirichlet distribution and Dirichlet law to incorporate the local spatial constrains in an image. Secondly, we directly deal with the Student's-t distribution in order to estimate the model parameters, whereas, the Student's-t distributions in previous models are represented as an infinite mixture of scaled Gaussians that lead to an increase in complexity. Finally, instead of using expectation maximization (EM) algorithm, the proposed method adopts the gradient method to minimize the higher bound on the data negative log-likelihood and to optimize the parameters. The proposed model is successfully compared to the state-of-the-art finite mixture models. Numerical experiments are presented where the proposed model is tested on various simulated and real medical images.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.