By Topic

High-Gain Fully Printed Organic Complementary Circuits on Flexible Plastic Foils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. Guerin ; Aix-Marseille Univ., Marseille, France ; A. Daami ; S. Jacob ; E. Bergeret
more authors

We present several fully printed organic complementary circuits using n- and p-type organic thin-film transistors. n-Type and p-type devices are developed on a flexible polyethylene-naphthalate substrate. All organic layers are deposited using a low-cost screen-printing technique. The inverters show a high gain and a switching point at exactly VDD/2. A seven-stage voltage-controlled oscillator (VCO) is designed with an organic output buffer, using the n- and p-type organic transistors. This VCO oscillates at a frequency of 186 Hz. Finally, two complementary differential amplifiers with high gain and large bandwidth are presented. The amplifiers only draw a 1-μA current from a 40-V power supply.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 10 )