By Topic

Vision-Based Analysis of Small Groups in Pedestrian Crowds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weina Ge ; Comput. Vision Lab., GE Global Res., Niskayuna, NY, USA ; Collins, R.T. ; Ruback, R.B.

Building upon state-of-the-art algorithms for pedestrian detection and multi-object tracking, and inspired by sociological models of human collective behavior, we automatically detect small groups of individuals who are traveling together. These groups are discovered by bottom-up hierarchical clustering using a generalized, symmetric Hausdorff distance defined with respect to pairwise proximity and velocity. We validate our results quantitatively and qualitatively on videos of real-world pedestrian scenes. Where human-coded ground truth is available, we find substantial statistical agreement between our results and the human-perceived small group structure of the crowd. Results from our automated crowd analysis also reveal interesting patterns governing the shape of pedestrian groups. These discoveries complement current research in crowd dynamics, and may provide insights to improve evacuation planning and real-time situation awareness during public disturbances.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 5 )