Cart (Loading....) | Create Account
Close category search window
 

The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bishop, T.E. ; Anthropics Technol. Ltd., London, UK ; Favaro, P.

Portable light field (LF) cameras have demonstrated capabilities beyond conventional cameras. In a single snapshot, they enable digital image refocusing and 3D reconstruction. We show that they obtain a larger depth of field but maintain the ability to reconstruct detail at high resolution. In fact, all depths are approximately focused, except for a thin slab where blur size is bounded, i.e., their depth of field is essentially inverted compared to regular cameras. Crucial to their success is the way they sample the LF, trading off spatial versus angular resolution, and how aliasing affects the LF. We show that applying traditional multiview stereo methods to the extracted low-resolution views can result in reconstruction errors due to aliasing. We address these challenges using an explicit image formation model, and incorporate Lambertian and texture preserving priors to reconstruct both scene depth and its superresolved texture in a variational Bayesian framework, eliminating aliasing by fusing multiview information. We demonstrate the method on synthetic and real images captured with our LF camera, and show that it can outperform other computational camera systems.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.