By Topic

An Unsupervised Approach for Person Name Bipolarization Using Principal Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chien Chin Chen ; Dept. of Inf. Manage., Nat. Taiwan Univ., Taipei, Taiwan ; Zhong-Yong Chen ; Chen-Yuan Wu

A topic is usually associated with a specific time, place, and person(s). Generally, topics that involve bipolar or competing viewpoints are attention getting and are thus reported in a large number of documents. Identifying the association between important persons mentioned in numerous topic documents would help readers comprehend topics more easily. In this paper, we propose an unsupervised approach for identifying bipolar person names in a set of topic documents. Specifically, we employ principal component analysis (PCA) to discover bipolar word usage patterns of person names in the documents, and show that the signs of the entries in the principal eigenvector of PCA partition the person names into bipolar groups spontaneously. To reduce the effect of data sparseness, we introduce two techniques, called the weighted correlation coefficient and off-topic block elimination. We also present a timeline system that shows the intensity and activeness development of the identified bipolar person groups. Empirical evaluations demonstrate the efficacy of the proposed approach in identifying bipolar person names in topic documents, while the generated timelines provide comprehensive storylines of topics.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 11 )