Cart (Loading....) | Create Account
Close category search window
 

Exploiting the Functional and Taxonomic Structure of Genomic Data by Probabilistic Topic Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xin Chen ; Coll. of Inf. Sci. & Technol., Drexel Univ., Philadelphia, PA, USA ; Xiaohua Hu ; Lim, T.Y. ; Xiajiong Shen
more authors

In this paper, we present a method that enable both homology-based approach and composition-based approach to further study the functional core (i.e., microbial core and gene core, correspondingly). In the proposed method, the identification of major functionality groups is achieved by generative topic modeling, which is able to extract useful information from unlabeled data. We first show that generative topic model can be used to model the taxon abundance information obtained by homology-based approach and study the microbial core. The model considers each sample as a "document,” which has a mixture of functional groups, while each functional group (also known as a "latent topic”) is a weight mixture of species. Therefore, estimating the generative topic model for taxon abundance data will uncover the distribution over latent functions (latent topic) in each sample. Second, we show that, generative topic model can also be used to study the genome-level composition of "N-mer” features (DNA subreads obtained by composition-based approaches). The model consider each genome as a mixture of latten genetic patterns (latent topics), while each functional pattern is a weighted mixture of the "N-mer” features, thus the existence of core genomes can be indicated by a set of common N-mer features. After studying the mutual information between latent topics and gene regions, we provide an explanation of the functional roles of uncovered latten genetic patterns. The experimental results demonstrate the effectiveness of proposed method.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 4 )

Date of Publication:

July-Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.