By Topic

Stochastic Hydro-Thermal Scheduling Under {\rm CO}_{2} Emissions Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rebennack, S. ; Div. of Econ. & Bus., Colorado Sch. of Mines, Golden, CO, USA ; Flach, B. ; Pereira, M.V.F. ; Pardalos, P.M.

Despite the uncertainty surrounding the design of a mechanism which is ultimately accepted by nations worldwide, the necessity to implement regulations to curb emissions of greenhouse gases on a global scale is consensual. The electricity sector plays a fundamental role in this puzzle and countries may soon have to revise their operating policy directives in order to make them compatible with additional constraints imposed by such regulations. We present a modeling approach for greenhouse gas emissions quotas which can be incorporated into a stochastic dual dynamic programming algorithm, commonly used to solve the hydro-thermal scheduling problem. Our approach is flexible and capable of accommodating a detailed representation of emissions and related constraints. A case study based on the Guatemalan power system exemplifies the potential effects of considering these restrictions.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 1 )