By Topic

Mobile Sensor Network Navigation Using Gaussian Processes With Truncated Observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yunfei Xu ; Dept. of Mech. Eng., Michigan State Univ., East Lansing, MI, USA ; Jongeun Choi ; Songhwai Oh

In this paper, we consider mobile sensor networks that use spatiotemporal Gaussian processes to predict a wide range of spatiotemporal physical phenomena. Nonparametric Gaussian process regression that is based on truncated observations is proposed for mobile sensor networks with limited memory and computational power. We first provide a theoretical foundation of Gaussian process regression with truncated observations. In particular, we demonstrate that prediction using all observations can be well approximated by prediction using truncated observations under certain conditions. Inspired by the analysis, we then propose a centralized navigation strategy for mobile sensor networks to move in order to reduce prediction error variances at points of interest. For the case in which each agent has a limited communication range, we propose a distributed navigation strategy. Particularly, we demonstrate that mobile sensing agents with the distributed navigation strategy produce an emergent, swarming-like, collective behavior for communication connectivity and are coordinated to improve the quality of the collective prediction capability.

Published in:

Robotics, IEEE Transactions on  (Volume:27 ,  Issue: 6 )