By Topic

Control of Parallel Multiple Converters for Direct-Drive Permanent-Magnet Wind Power Generation Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhuang Xu ; Harbin Inst. of Technol., Harbin, China ; Rui Li ; Hui Zhu ; Dianguo Xu
more authors

This paper proposes control strategies for megawatt-level direct-drive wind generation systems based on permanent magnet synchronous generators. In the paper, a circulating current model is derived and analyzed. The parallel-operation controllers are designed to restrain reactive power circulation and beat-frequency circulation currents caused by discontinuous space-vector modulation. The control schemes do not change the configurations of the system consisting of parallel multiple converters. They are easy to implement for modular designs and large impedance required to equalize the current sharing is not needed. To increase the system reliability, a robust adaptive sliding observer is designed to sense the rotor position of the wind power generator. The experimental results proved the effectiveness of the control strategies.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 3 )