By Topic

A Semitransparency-Based Optical-Flow Method With a Point Trajectory Model for Particle-Like Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sakaino, H. ; Energy & Environ. Syst. Labs., Nippon Telegraph & Telephone Corp., Tokyo, Japan

This paper proposes a new semitransparency-based optical-flow model with a point trajectory (PT) model for particle-like video. Previous optical-flow models have used ranging from image brightness constancy to image brightness change models as constraints. However, two important issues remain unsolved. The first is how to track/match a semitransparent object with a very large displacement between frames. Such moving objects with different shapes and sizes in an outdoor scene move against a complicated background. Second, due to semitransparency, the image intensity between frames can also violate a previous image brightness-based optical-flow model. Thus, we propose a two-step optimization for the optical-flow estimation model for a moving semitransparent object, i.e., particle. In the first step, a rough optical flow between particles is estimated by a new alpha constancy constraint that is based on an image generation model of semitransparency. In the second step, the optical flow of a particle with a continuous trajectory in a definite temporal interval based on a PT model can be refined. Many experiments using various falling-snow and foggy scenes with multiple moving vehicles show the significant improvement of the optical flow compared with a previous optical-flow model.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )