By Topic

Kronecker Compressive Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duarte, M.F. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Baraniuk, R.G.

Compressive sensing (CS) is an emerging approach for the acquisition of signals having a sparse or compressible representation in some basis. While the CS literature has mostly focused on problems involving 1-D signals and 2-D images, many important applications involve multidimensional signals; the construction of sparsifying bases and measurement systems for such signals is complicated by their higher dimensionality. In this paper, we propose the use of Kronecker product matrices in CS for two purposes. First, such matrices can act as sparsifying bases that jointly model the structure present in all of the signal dimensions. Second, such matrices can represent the measurement protocols used in distributed settings. Our formulation enables the derivation of analytical bounds for the sparse approximation of multidimensional signals and CS recovery performance, as well as a means of evaluating novel distributed measurement schemes.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )